Creating a Scalable Database for Weather Research
Seth Cook and Stephen Harrell

Research Computing, Purdue University

Introduction

Atmospheric scientists store some meteorological
data in the GRIB (GRIdded Binary)[4| format,
which 'is an efficient vehicle for transmitting large
volumes of gridded data'|4|. Data sets stored in the
GRIB format may be split across multiple files, each
file containing compressed, binary data, which adds
complexity to querying meteorological data across
multiple variables. To simplify the process of analyz-
ing meteorological data across multiple dimensions,
we wrote a tool that uses a generalized format for
each meteorological data point to store and query a
collection of data.

Our tool, known as Wintx, permits queries focused
on a location over a duration of time within a sin-
ole command. Performing a similar query with data
in the GRIB format would require analyzing multi-
ple GRIB files, expanding their compressed binary
data, filtering the geospatial grids on multiple levels,
then referencing the geospatial locations with the
variable data. Adding additional constraints with
Wintx, such as limiting the data in the query to a
temperature range, is also done in the same query
command. In order to add the same constraint for
data in the GRIB format, additional filters are re-
quired to accommodate each file.

Requirements

Our requirements were formed to satisfy the need
for scalability, space efficiency, and geospatial
searches:

« Generalized format for storing and retrieving
meteorological data

« Interface to store and query data across
multiple variables

« Stores data in a scalable architecture
« Allow geospatial queries from shape files

« Imports the data to keep up with daily
weather prediction operations

« Bfficiently utilizes storage space

= Provides access to data through web based
services

Design

Wintx is a Python library written to provide an
abstract interface for Python scripts to use. The
intertace encapsulates interactions with a sharded
database, allowing developers to write programs
that interact with their data without using database
or sharding functions. A RESTful|2] service has
been developed using this interface to expand
Wintx’s functionality to web based services. The

ceneralized format, developed to interact with me-
teorological data, allows for the database to change
without impacting the users interaction with Wintx.

Python Script Web Application

Request Data Request URI

|

l4———Reguest:
GRIB File ——Import Data—») Wintx RESTful Service
Results——p»l

Import / Request Data

Result Data

Y
Sharded Database

Database Database LI Database
Shard 1 Shard 2 Shard N

Figure 1. The Wintx workflow model

Database Disk Space Usage

A NoSQL database (MongoDB|3|) and a relational
database (MySQL Fabric|1]) were tested as solutions
for Wintx. MongoDDB was tested with and without
indexes.

NoSQL databases store uncompressed metadata
with each data point, unlike relational databases
which can normalize data and compress the dupli-
cate metadata. As seen in Figure 2, the MySQL
Fabric solution stores a data point in the same space
as the MongoDDB, no-index solution and in less space
than the MongoDDB, indexed solution. MySQL Fab-
ric is the ideal solution in terms of storing data effi-
ciently. GRIB files no longer need to be maintained
once ingested into Wintx. Only database sizes are

taken into consideration for these tests.

Diskspace Used by Database

60

Millions

MySQL Fabric M MongoDB With Indexes MongoDB Without Indexes

Figure 2: Amount of space (in gigabytes) used on disk by each
database. Each GRIB file tested contained # records.

Database Import Speeds

The underlying database needs to be capable of importing GRIB files as quickly as possible to keep up with

daily weather prediction operations. Figure 3 displays how many records per second each database solution
can import from a GRIB file. MySQL Fabric and MongoDB without indexing have about the same upper
bound import speed, though MySQL Fabric’s lower bound import speeds are taster than MongoDB’s. MySQL
Fabric will import records consistently faster than MongoDDB, especially with indexes.

Record Import Speeds for MongoDB Without Indexes

Record Import Speeds for MongoDB With Indexes

Record Import Speed for MySQL Fabric

600 ‘ 600

500 il il Yl 7 ; By —

o
o
o
|
I
|

200 T e o = N __.—__'; vy -'_-.._ T e

of Records Imported / 1 Second
S
o
|
|
|
|
I
Records Imported / 1 Secon

100

o
o

Number of Records in Database

Number of Records in Database

25 30 35 40 0 5 10 15 20 25 30 35 40
Millions Millions

Number of Records in Database

Figure 3: The speeds of individual databases.

Conclusion

Wintx was created to satisfy the need for scalability;,
space efficiency, and geospatial searching with me-
teorological data. Our solution, Wintx, provides a
ceneralized method for interacting with data. It in-
cludes an easy query mechanism, and is built using
MySQL Fabric rather than MongoDB as the un-
derlying database. MySQL Fabric used disk space
more efficiently and consistently imported records at
a faster rate while still providing the ability to shard
the data set and perform geospatial queries. Wintx
offers atmospheric scientists a resource to trivially
store, access, and query their data. A web REST
API on top of Wintx enables collaboration between
scientists and developers to build web based appli-
cations.

References

1] Oracle Corporation.
MySQL Fabric.

2] Todd Fredrich.
REST API Tutorial, August 2013.

3] MongoDB Inc.
MongoDB.

4] World Meteorological Organization,
Guide to GRIB.

Acknowledgements

This work was supported by the Indiana Department of Trans-
portation. The contents of this paper reflect the views of the
authors, who are responsible for the facts and the accuracy
of the data presented herein, and do not necessarily reflect
the official views or policies of the sponsoring organizations.
These contents do not constitute a standard, specification, or
regulation.

« Email: sethcook@purdue.edu

UNIVEIRSIT Yo

mailto:sethcook@purdue.edu

